Serveur d'exploration sur la rapamycine et les champignons

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Nitrogen regulates AMPK to control TORC1 signaling.

Identifieur interne : 000C57 ( Main/Exploration ); précédent : 000C56; suivant : 000C58

Nitrogen regulates AMPK to control TORC1 signaling.

Auteurs : Elizabeth Davie [Royaume-Uni] ; Gabriella M A. Forte [Royaume-Uni] ; Janni Petersen [Australie]

Source :

RBID : pubmed:25639242

Descripteurs français

English descriptors

Abstract

BACKGROUND

Cell growth and cell-cycle progression are tightly coordinated to enable cells to adjust their size (timing of division) to the demands of proliferation in varying nutritional environments. In fission yeast, nitrogen stress results in sustained proliferation at a reduced size.

RESULTS

Here, we show that cells can sense nitrogen stress to reduce target of rapamycin complex-1 (TORC1) activity. Nitrogen-stress-induced TORC1 inhibition differs from amino-acid-dependent control of TORC1 and requires the Ssp2 (AMPKα) kinase, the Tsc1/2 complex, and Rhb1 GTPase. Importantly, the β and γ regulatory subunits of AMPK are not required to control cell division in response to nitrogen stress, providing evidence for a nitrogen-sensing mechanism that is independent of changes in intracellular ATP/AMP levels. The CaMKK homolog Ssp1 is constitutively required for phosphorylation of the AMPKα(Ssp2) T loop. However, we find that a second homolog CaMKK(Ppk34) is specifically required to stimulate AMPKα(Ssp2) activation in response to nitrogen stress. Finally, ammonia also controls mTORC1 activity in human cells; mTORC1 is activated upon the addition of ammonium to glutamine-starved Hep3B cancer cells.

CONCLUSIONS

The alternative nitrogen source ammonia can simulate TORC1 activity to support growth and division under challenging nutrient settings, a situation often seen in cancer.


DOI: 10.1016/j.cub.2014.12.034
PubMed: 25639242
PubMed Central: PMC4331286


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Nitrogen regulates AMPK to control TORC1 signaling.</title>
<author>
<name sortKey="Davie, Elizabeth" sort="Davie, Elizabeth" uniqKey="Davie E" first="Elizabeth" last="Davie">Elizabeth Davie</name>
<affiliation wicri:level="4">
<nlm:affiliation>Faculty of Life Sciences, University of Manchester, C.4255 Michael Smith Building, Oxford Road, Manchester M13 9PT, UK.</nlm:affiliation>
<country xml:lang="fr">Royaume-Uni</country>
<wicri:regionArea>Faculty of Life Sciences, University of Manchester, C.4255 Michael Smith Building, Oxford Road, Manchester M13 9PT</wicri:regionArea>
<orgName type="university">Université de Manchester</orgName>
<placeName>
<settlement type="city">Manchester</settlement>
<region type="nation">Angleterre</region>
<region nuts="2" type="region">Grand Manchester</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Forte, Gabriella M A" sort="Forte, Gabriella M A" uniqKey="Forte G" first="Gabriella M A" last="Forte">Gabriella M A. Forte</name>
<affiliation wicri:level="4">
<nlm:affiliation>Faculty of Life Sciences, University of Manchester, C.4255 Michael Smith Building, Oxford Road, Manchester M13 9PT, UK.</nlm:affiliation>
<country xml:lang="fr">Royaume-Uni</country>
<wicri:regionArea>Faculty of Life Sciences, University of Manchester, C.4255 Michael Smith Building, Oxford Road, Manchester M13 9PT</wicri:regionArea>
<orgName type="university">Université de Manchester</orgName>
<placeName>
<settlement type="city">Manchester</settlement>
<region type="nation">Angleterre</region>
<region nuts="2" type="region">Grand Manchester</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Petersen, Janni" sort="Petersen, Janni" uniqKey="Petersen J" first="Janni" last="Petersen">Janni Petersen</name>
<affiliation wicri:level="4">
<nlm:affiliation>Faculty of Life Sciences, University of Manchester, C.4255 Michael Smith Building, Oxford Road, Manchester M13 9PT, UK; Flinders Centre for Innovation in Cancer, School of Medicine, Flinders University, Adelaide, SA 5001, Australia. Electronic address: janni.petersen@flinders.edu.au.</nlm:affiliation>
<country xml:lang="fr">Australie</country>
<wicri:regionArea>Faculty of Life Sciences, University of Manchester, C.4255 Michael Smith Building, Oxford Road, Manchester M13 9PT, UK; Flinders Centre for Innovation in Cancer, School of Medicine, Flinders University, Adelaide, SA 5001</wicri:regionArea>
<orgName type="university">Université de Manchester</orgName>
<placeName>
<settlement type="city">Manchester</settlement>
<region type="nation">Angleterre</region>
<region nuts="2" type="region">Grand Manchester</region>
</placeName>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2015">2015</date>
<idno type="RBID">pubmed:25639242</idno>
<idno type="pmid">25639242</idno>
<idno type="doi">10.1016/j.cub.2014.12.034</idno>
<idno type="pmc">PMC4331286</idno>
<idno type="wicri:Area/Main/Corpus">000D10</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">000D10</idno>
<idno type="wicri:Area/Main/Curation">000D10</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">000D10</idno>
<idno type="wicri:Area/Main/Exploration">000D10</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Nitrogen regulates AMPK to control TORC1 signaling.</title>
<author>
<name sortKey="Davie, Elizabeth" sort="Davie, Elizabeth" uniqKey="Davie E" first="Elizabeth" last="Davie">Elizabeth Davie</name>
<affiliation wicri:level="4">
<nlm:affiliation>Faculty of Life Sciences, University of Manchester, C.4255 Michael Smith Building, Oxford Road, Manchester M13 9PT, UK.</nlm:affiliation>
<country xml:lang="fr">Royaume-Uni</country>
<wicri:regionArea>Faculty of Life Sciences, University of Manchester, C.4255 Michael Smith Building, Oxford Road, Manchester M13 9PT</wicri:regionArea>
<orgName type="university">Université de Manchester</orgName>
<placeName>
<settlement type="city">Manchester</settlement>
<region type="nation">Angleterre</region>
<region nuts="2" type="region">Grand Manchester</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Forte, Gabriella M A" sort="Forte, Gabriella M A" uniqKey="Forte G" first="Gabriella M A" last="Forte">Gabriella M A. Forte</name>
<affiliation wicri:level="4">
<nlm:affiliation>Faculty of Life Sciences, University of Manchester, C.4255 Michael Smith Building, Oxford Road, Manchester M13 9PT, UK.</nlm:affiliation>
<country xml:lang="fr">Royaume-Uni</country>
<wicri:regionArea>Faculty of Life Sciences, University of Manchester, C.4255 Michael Smith Building, Oxford Road, Manchester M13 9PT</wicri:regionArea>
<orgName type="university">Université de Manchester</orgName>
<placeName>
<settlement type="city">Manchester</settlement>
<region type="nation">Angleterre</region>
<region nuts="2" type="region">Grand Manchester</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Petersen, Janni" sort="Petersen, Janni" uniqKey="Petersen J" first="Janni" last="Petersen">Janni Petersen</name>
<affiliation wicri:level="4">
<nlm:affiliation>Faculty of Life Sciences, University of Manchester, C.4255 Michael Smith Building, Oxford Road, Manchester M13 9PT, UK; Flinders Centre for Innovation in Cancer, School of Medicine, Flinders University, Adelaide, SA 5001, Australia. Electronic address: janni.petersen@flinders.edu.au.</nlm:affiliation>
<country xml:lang="fr">Australie</country>
<wicri:regionArea>Faculty of Life Sciences, University of Manchester, C.4255 Michael Smith Building, Oxford Road, Manchester M13 9PT, UK; Flinders Centre for Innovation in Cancer, School of Medicine, Flinders University, Adelaide, SA 5001</wicri:regionArea>
<orgName type="university">Université de Manchester</orgName>
<placeName>
<settlement type="city">Manchester</settlement>
<region type="nation">Angleterre</region>
<region nuts="2" type="region">Grand Manchester</region>
</placeName>
</affiliation>
</author>
</analytic>
<series>
<title level="j">Current biology : CB</title>
<idno type="eISSN">1879-0445</idno>
<imprint>
<date when="2015" type="published">2015</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Cell Division (MeSH)</term>
<term>Mechanistic Target of Rapamycin Complex 1 (MeSH)</term>
<term>Multiprotein Complexes (genetics)</term>
<term>Multiprotein Complexes (metabolism)</term>
<term>Nitrogen (metabolism)</term>
<term>Phosphorylation (MeSH)</term>
<term>Protein-Serine-Threonine Kinases (genetics)</term>
<term>Protein-Serine-Threonine Kinases (metabolism)</term>
<term>Schizosaccharomyces (enzymology)</term>
<term>Schizosaccharomyces (genetics)</term>
<term>Schizosaccharomyces (physiology)</term>
<term>Schizosaccharomyces pombe Proteins (genetics)</term>
<term>Schizosaccharomyces pombe Proteins (metabolism)</term>
<term>Signal Transduction (MeSH)</term>
<term>TOR Serine-Threonine Kinases (genetics)</term>
<term>TOR Serine-Threonine Kinases (metabolism)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Azote (métabolisme)</term>
<term>Complexe-1 cible mécanistique de la rapamycine (MeSH)</term>
<term>Complexes multiprotéiques (génétique)</term>
<term>Complexes multiprotéiques (métabolisme)</term>
<term>Division cellulaire (MeSH)</term>
<term>Phosphorylation (MeSH)</term>
<term>Protein-Serine-Threonine Kinases (génétique)</term>
<term>Protein-Serine-Threonine Kinases (métabolisme)</term>
<term>Protéines de Schizosaccharomyces pombe (génétique)</term>
<term>Protéines de Schizosaccharomyces pombe (métabolisme)</term>
<term>Schizosaccharomyces (enzymologie)</term>
<term>Schizosaccharomyces (génétique)</term>
<term>Schizosaccharomyces (physiologie)</term>
<term>Sérine-thréonine kinases TOR (génétique)</term>
<term>Sérine-thréonine kinases TOR (métabolisme)</term>
<term>Transduction du signal (MeSH)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="genetics" xml:lang="en">
<term>Multiprotein Complexes</term>
<term>Protein-Serine-Threonine Kinases</term>
<term>Schizosaccharomyces pombe Proteins</term>
<term>TOR Serine-Threonine Kinases</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="metabolism" xml:lang="en">
<term>Multiprotein Complexes</term>
<term>Nitrogen</term>
<term>Protein-Serine-Threonine Kinases</term>
<term>Schizosaccharomyces pombe Proteins</term>
<term>TOR Serine-Threonine Kinases</term>
</keywords>
<keywords scheme="MESH" type="chemical" xml:lang="en">
<term>Mechanistic Target of Rapamycin Complex 1</term>
</keywords>
<keywords scheme="MESH" qualifier="enzymologie" xml:lang="fr">
<term>Schizosaccharomyces</term>
</keywords>
<keywords scheme="MESH" qualifier="enzymology" xml:lang="en">
<term>Schizosaccharomyces</term>
</keywords>
<keywords scheme="MESH" qualifier="genetics" xml:lang="en">
<term>Schizosaccharomyces</term>
</keywords>
<keywords scheme="MESH" qualifier="génétique" xml:lang="fr">
<term>Complexes multiprotéiques</term>
<term>Protein-Serine-Threonine Kinases</term>
<term>Protéines de Schizosaccharomyces pombe</term>
<term>Schizosaccharomyces</term>
<term>Sérine-thréonine kinases TOR</term>
</keywords>
<keywords scheme="MESH" qualifier="métabolisme" xml:lang="fr">
<term>Azote</term>
<term>Complexes multiprotéiques</term>
<term>Protein-Serine-Threonine Kinases</term>
<term>Protéines de Schizosaccharomyces pombe</term>
<term>Sérine-thréonine kinases TOR</term>
</keywords>
<keywords scheme="MESH" qualifier="physiologie" xml:lang="fr">
<term>Schizosaccharomyces</term>
</keywords>
<keywords scheme="MESH" qualifier="physiology" xml:lang="en">
<term>Schizosaccharomyces</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Cell Division</term>
<term>Phosphorylation</term>
<term>Signal Transduction</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Complexe-1 cible mécanistique de la rapamycine</term>
<term>Division cellulaire</term>
<term>Phosphorylation</term>
<term>Transduction du signal</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">
<p>
<b>BACKGROUND</b>
</p>
<p>Cell growth and cell-cycle progression are tightly coordinated to enable cells to adjust their size (timing of division) to the demands of proliferation in varying nutritional environments. In fission yeast, nitrogen stress results in sustained proliferation at a reduced size.</p>
</div>
<div type="abstract" xml:lang="en">
<p>
<b>RESULTS</b>
</p>
<p>Here, we show that cells can sense nitrogen stress to reduce target of rapamycin complex-1 (TORC1) activity. Nitrogen-stress-induced TORC1 inhibition differs from amino-acid-dependent control of TORC1 and requires the Ssp2 (AMPKα) kinase, the Tsc1/2 complex, and Rhb1 GTPase. Importantly, the β and γ regulatory subunits of AMPK are not required to control cell division in response to nitrogen stress, providing evidence for a nitrogen-sensing mechanism that is independent of changes in intracellular ATP/AMP levels. The CaMKK homolog Ssp1 is constitutively required for phosphorylation of the AMPKα(Ssp2) T loop. However, we find that a second homolog CaMKK(Ppk34) is specifically required to stimulate AMPKα(Ssp2) activation in response to nitrogen stress. Finally, ammonia also controls mTORC1 activity in human cells; mTORC1 is activated upon the addition of ammonium to glutamine-starved Hep3B cancer cells.</p>
</div>
<div type="abstract" xml:lang="en">
<p>
<b>CONCLUSIONS</b>
</p>
<p>The alternative nitrogen source ammonia can simulate TORC1 activity to support growth and division under challenging nutrient settings, a situation often seen in cancer.</p>
</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">25639242</PMID>
<DateCompleted>
<Year>2015</Year>
<Month>12</Month>
<Day>02</Day>
</DateCompleted>
<DateRevised>
<Year>2018</Year>
<Month>11</Month>
<Day>13</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Electronic">1879-0445</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>25</Volume>
<Issue>4</Issue>
<PubDate>
<Year>2015</Year>
<Month>Feb</Month>
<Day>16</Day>
</PubDate>
</JournalIssue>
<Title>Current biology : CB</Title>
<ISOAbbreviation>Curr Biol</ISOAbbreviation>
</Journal>
<ArticleTitle>Nitrogen regulates AMPK to control TORC1 signaling.</ArticleTitle>
<Pagination>
<MedlinePgn>445-54</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1016/j.cub.2014.12.034</ELocationID>
<ELocationID EIdType="pii" ValidYN="Y">S0960-9822(14)01637-6</ELocationID>
<Abstract>
<AbstractText Label="BACKGROUND" NlmCategory="BACKGROUND">Cell growth and cell-cycle progression are tightly coordinated to enable cells to adjust their size (timing of division) to the demands of proliferation in varying nutritional environments. In fission yeast, nitrogen stress results in sustained proliferation at a reduced size.</AbstractText>
<AbstractText Label="RESULTS" NlmCategory="RESULTS">Here, we show that cells can sense nitrogen stress to reduce target of rapamycin complex-1 (TORC1) activity. Nitrogen-stress-induced TORC1 inhibition differs from amino-acid-dependent control of TORC1 and requires the Ssp2 (AMPKα) kinase, the Tsc1/2 complex, and Rhb1 GTPase. Importantly, the β and γ regulatory subunits of AMPK are not required to control cell division in response to nitrogen stress, providing evidence for a nitrogen-sensing mechanism that is independent of changes in intracellular ATP/AMP levels. The CaMKK homolog Ssp1 is constitutively required for phosphorylation of the AMPKα(Ssp2) T loop. However, we find that a second homolog CaMKK(Ppk34) is specifically required to stimulate AMPKα(Ssp2) activation in response to nitrogen stress. Finally, ammonia also controls mTORC1 activity in human cells; mTORC1 is activated upon the addition of ammonium to glutamine-starved Hep3B cancer cells.</AbstractText>
<AbstractText Label="CONCLUSIONS" NlmCategory="CONCLUSIONS">The alternative nitrogen source ammonia can simulate TORC1 activity to support growth and division under challenging nutrient settings, a situation often seen in cancer.</AbstractText>
<CopyrightInformation>Copyright © 2015 The Authors. Published by Elsevier Ltd.. All rights reserved.</CopyrightInformation>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Davie</LastName>
<ForeName>Elizabeth</ForeName>
<Initials>E</Initials>
<AffiliationInfo>
<Affiliation>Faculty of Life Sciences, University of Manchester, C.4255 Michael Smith Building, Oxford Road, Manchester M13 9PT, UK.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Forte</LastName>
<ForeName>Gabriella M A</ForeName>
<Initials>GM</Initials>
<AffiliationInfo>
<Affiliation>Faculty of Life Sciences, University of Manchester, C.4255 Michael Smith Building, Oxford Road, Manchester M13 9PT, UK.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Petersen</LastName>
<ForeName>Janni</ForeName>
<Initials>J</Initials>
<AffiliationInfo>
<Affiliation>Faculty of Life Sciences, University of Manchester, C.4255 Michael Smith Building, Oxford Road, Manchester M13 9PT, UK; Flinders Centre for Innovation in Cancer, School of Medicine, Flinders University, Adelaide, SA 5001, Australia. Electronic address: janni.petersen@flinders.edu.au.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<GrantList CompleteYN="Y">
<Grant>
<GrantID>11178</GrantID>
<Agency>Cancer Research UK</Agency>
<Country>United Kingdom</Country>
</Grant>
<Grant>
<GrantID>C10888/A11178</GrantID>
<Agency>Cancer Research UK</Agency>
<Country>United Kingdom</Country>
</Grant>
<Grant>
<Agency>Wellcome Trust</Agency>
<Country>United Kingdom</Country>
</Grant>
</GrantList>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2015</Year>
<Month>01</Month>
<Day>29</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>England</Country>
<MedlineTA>Curr Biol</MedlineTA>
<NlmUniqueID>9107782</NlmUniqueID>
<ISSNLinking>0960-9822</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D046912">Multiprotein Complexes</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D029702">Schizosaccharomyces pombe Proteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 2.7.1.1</RegistryNumber>
<NameOfSubstance UI="D058570">TOR Serine-Threonine Kinases</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 2.7.11.1</RegistryNumber>
<NameOfSubstance UI="D000076222">Mechanistic Target of Rapamycin Complex 1</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 2.7.11.1</RegistryNumber>
<NameOfSubstance UI="D017346">Protein-Serine-Threonine Kinases</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 2.7.11.1</RegistryNumber>
<NameOfSubstance UI="C573920">Ssp2 protein, S pombe</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>N762921K75</RegistryNumber>
<NameOfSubstance UI="D009584">Nitrogen</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D002455" MajorTopicYN="N">Cell Division</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D000076222" MajorTopicYN="N">Mechanistic Target of Rapamycin Complex 1</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D046912" MajorTopicYN="N">Multiprotein Complexes</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D009584" MajorTopicYN="N">Nitrogen</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010766" MajorTopicYN="N">Phosphorylation</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D017346" MajorTopicYN="N">Protein-Serine-Threonine Kinases</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D012568" MajorTopicYN="N">Schizosaccharomyces</DescriptorName>
<QualifierName UI="Q000201" MajorTopicYN="N">enzymology</QualifierName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000502" MajorTopicYN="Y">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D029702" MajorTopicYN="N">Schizosaccharomyces pombe Proteins</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D015398" MajorTopicYN="Y">Signal Transduction</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D058570" MajorTopicYN="N">TOR Serine-Threonine Kinases</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2014</Year>
<Month>08</Month>
<Day>14</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="revised">
<Year>2014</Year>
<Month>11</Month>
<Day>06</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2014</Year>
<Month>12</Month>
<Day>10</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2015</Year>
<Month>2</Month>
<Day>3</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2015</Year>
<Month>2</Month>
<Day>3</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2015</Year>
<Month>12</Month>
<Day>15</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">25639242</ArticleId>
<ArticleId IdType="pii">S0960-9822(14)01637-6</ArticleId>
<ArticleId IdType="doi">10.1016/j.cub.2014.12.034</ArticleId>
<ArticleId IdType="pmc">PMC4331286</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Mol Cell Biol. 2010 Aug;30(15):3749-57</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20516213</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>EMBO J. 2003 Jun 16;22(12):3073-83</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12805221</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genes Cells. 2012 Aug;17(8):698-708</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22762302</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2007 Feb 27;104(9):3514-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17360675</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell Cycle. 2010 Oct 1;9(19):3921-32</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20935507</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Hum Mol Genet. 2005 Oct 1;14(19):2851-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16115814</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Cell Sci. 2006 Nov 1;119(Pt 21):4475-85</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17046992</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genetics. 2000 Jun;155(2):611-22</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10835385</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Biol. 2005 Apr 26;15(8):702-13</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15854902</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Exp Cell Res. 1977 Jul;107(2):377-86</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">872891</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Cell Sci. 2014 Mar 15;127(Pt 6):1346-56</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24424027</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Philos Trans R Soc Lond B Biol Sci. 2011 Dec 27;366(1584):3508-20</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22084378</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS Genet. 2011 Aug;7(8):e1002229</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21852960</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Microbiol. 2005 Nov;58(4):1074-86</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16262791</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Cell Sci. 2009 Jun 1;122(Pt 11):1737-46</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19417002</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Opin Cell Biol. 2012 Dec;24(6):838-44</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22947494</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell. 2008 Apr 25;30(2):214-26</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18439900</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>EMBO J. 1995 Feb 1;14(3):492-502</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7859738</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell. 2003 Nov 26;115(5):577-90</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14651849</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Cell Biol. 2007 Nov;9(11):1263-72</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17952063</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Cell Sci. 2012 Apr 15;125(Pt 8):1920-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22344254</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genetics. 2002 Jul;161(3):1053-63</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12136010</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genes Cells. 2003 Jan;8(1):65-79</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12558800</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biol Open. 2012 Sep 15;1(9):884-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23213482</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Cell Biol. 2004 Nov;6(11):1122-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15467718</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Rev Mol Cell Biol. 2012 Apr;13(4):251-62</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22436748</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell Biol. 2007 Apr;27(8):3154-64</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17261596</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 1999 Dec 21;96(26):14866-70</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10611304</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell. 2003 Jun;11(6):1457-66</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12820960</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2005 May 26;435(7041):507-12</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15917811</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genes Dev. 2013 Oct 1;27(19):2065-71</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24115766</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Cell Biol. 2014 Jul;24(7):400-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24698685</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell. 2006 Feb 10;124(3):471-84</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16469695</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cancer Cell. 2007 Jul;12(1):9-22</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17613433</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell. 2002 Sep;10(3):457-68</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12408816</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell Cycle. 2008 Feb 1;7(3):358-64</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18235227</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Biol. 2014 Feb 17;24(4):428-33</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24508166</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genes Cells. 2006 Dec;11(12):1367-79</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17121544</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genes Dev. 2003 Aug 1;17(15):1829-34</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12869586</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>EMBO J. 1995 Jul 17;14(14):3325-38</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7628434</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genes Dev. 1991 Nov;5(11):1990-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1657709</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Am J Physiol Endocrinol Metab. 2007 Jun;292(6):E1647-55</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17284572</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Endocrinol Metab. 2011 Mar;22(3):94-102</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21269838</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>FEBS Lett. 1995 Dec 27;377(3):421-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8549768</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Eukaryot Cell. 2012 Feb;11(2):159-67</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22140232</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2002 Jul 5;277(27):23977-80</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11997383</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Top Microbiol Immunol. 2004;279:85-95</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14560953</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 1996 Nov 1;271(44):27879-87</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8910387</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Cell Sci. 2012 Jun 1;125(Pt 11):2655-64</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22375066</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Am J Physiol. 1999 Oct;277(4 Pt 2):F493-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10516271</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 1999 Nov 26;274(48):34493-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10567431</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>Australie</li>
<li>Royaume-Uni</li>
</country>
<region>
<li>Angleterre</li>
<li>Grand Manchester</li>
</region>
<settlement>
<li>Manchester</li>
</settlement>
<orgName>
<li>Université de Manchester</li>
</orgName>
</list>
<tree>
<country name="Royaume-Uni">
<region name="Angleterre">
<name sortKey="Davie, Elizabeth" sort="Davie, Elizabeth" uniqKey="Davie E" first="Elizabeth" last="Davie">Elizabeth Davie</name>
</region>
<name sortKey="Forte, Gabriella M A" sort="Forte, Gabriella M A" uniqKey="Forte G" first="Gabriella M A" last="Forte">Gabriella M A. Forte</name>
</country>
<country name="Australie">
<region name="Angleterre">
<name sortKey="Petersen, Janni" sort="Petersen, Janni" uniqKey="Petersen J" first="Janni" last="Petersen">Janni Petersen</name>
</region>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/RapamycinFungusV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000C57 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 000C57 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    RapamycinFungusV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:25639242
   |texte=   Nitrogen regulates AMPK to control TORC1 signaling.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:25639242" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a RapamycinFungusV1 

Wicri

This area was generated with Dilib version V0.6.38.
Data generation: Thu Nov 19 21:55:41 2020. Site generation: Thu Nov 19 22:00:39 2020